ACTIVITY AND SELECTIVITY OF PGLa-H TANDEM REPEAT PEPTIDES AGAINST MULTIDRUG RESISTANT CLINICAL BACTERIAL ISOLATES

<u>Tomislav Rončević¹, Goran Gajski², Nada Ilić¹, Ivana Goić-Barišić³, Marija Tonkić³, Monica Benincasa⁴, Larisa Zoranić¹, Marijana Mijaković¹,</u> Juraj Simunić¹, Alessandro Tossi⁴, Davor Juretić^{1,5,*}

¹Department of Physics, Faculty of Science, University of Split, Split, Croatia; ²Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia; ³Department of Clinical Microbiology, Clinical Hospital Split, Split, Croatia; ⁴Department of Life Sciences, University of Trieste, Italy; ⁵Mediterranean Institute for Life Sciences, Split, Croatia **Contact**: davor.juretic@gmail.com

RESULTS

Wavelength (nm)

CD Spectra of *di*PGLa-H (A) and kiadin (B). Both peptides (20 µM) are random coil in aqueous buffer (—), but α helical in 10 mM SDS (—) or 50% TFE (—) (see inset). Spectral shape with anionic LUVs (PG:dPG 95:5, 0.4 mM phospholipid, —) suggests aggregation.

ANTIMICROBIAL ACTIVITY:

MIC and MBC values vs laboatory strains and drug resistant clinical isolates and relative selectivity indices (SI = HC_{50}/MIC).

	DiPGLa-H Kiadin				
MIC	MBC	SI	MIC	MBC	SI

HAEMOLYSIS:

Assays on human RBC indicate low toxicity for both peptides with HC₅₀ values estimated at $270 \pm 30 \mu$ M for *di*PGLa-H (—) and $340 \pm 30 \mu$ M for kiadin (—).

HPBL VIABILITY & DNA DAMAGE:

Gram-negative						
E. coli ATCC 25922	1.5	1.5	180±20	0.75	0.75	450±40
<i>E. coli</i> c.i.	6	12	45±5	12	24	30±5
K. pneumoniae ATCC 13883	3	3	90±10	3	3	115±10
K. pneumoniae c.i.	12	24	22.5±2.5	12	24	30±5
A. baumannii ATCC 19606	1.5	1.5-3	180±20	1.5	1.5	225±20
A. baumannii c.i.	1.5-3	3	135±50	1.5	1.5	225±20
P. aeruginosa ATCC 27853	6	12	45±5	б	12	60±5
P. aeruginosa c.i.	6	12	45±5	3	6	115±10
Gram-positive						
S. aureus ATCC 29213	0.75	1.5	360±40	0.5-1	1.5	450±40
S. aureus c.i.	1.5	1.5	180±20	3	3	115±10

MEMBRANE PERMEABILIZATION:

Bacterial membrane integrity measured by flow cytometry on *E.coli* ATCC 25922 cells, exposed to 0,5 (—), 1 (—) and 2 (—) μ M peptide concentrations. Fast permeabilization is typical for membranolytic AMPs, and suggests a similiar mode of action for both peptides. Melittin (5 μ M, —) was used as positive control.

Effect of *di*PGLa-H and kiadin after exposure of human peripheral blood leukocytes, HPBLs for 4 and 24 h. Effect on viability assessed by differential staining with AO/EtBr (bottom panels). DNA damage as % DNA in comet assay tail (upper panel). Low cytotoxicity and no DNA damage.

*Statistically significant compared to corresponding control (P<0.05).

Secondary structure of *di*PGLa-H and kiadin as a function of simulation time in H₂O and TFE/H₂O solution. Simulation using Gromacs 4.6.5 package. A) diPGLa-H in water; B) diPGLa-H in TFE; C) kiadin in water; and D) kiadin in TFE. The structure on the right corresponds to the last conformation of the peptide after 120 ns in the corresponding solution.

CONCLUSIONS

- Doubling the size of a small but poorly active AMP significantly increased its potency without affecting selectivity.
- CD studies indicate that both longer AMPs are random coil structure in aqueous solution, but substantially helical in anisotropic environments.
- DiPGLa-H and Kiadin show potent and broad spectrum antibacterial activity (one Gram +, 4 Gram- species tested) also against MDR clinical isolates.
- These AMPS are potentially useful lead compounds due to reduced cytotoxicity in vitro, especially in comparison to the last resort antibiotic colistin.

Acknowledgements:

Authors acknowledge funding from Croatian Science Foundation project 8481 BioAmpMode. Department for Life Sciences (Trieste) acknowledges support from Beneficentia Stiftung, Lichtenstein.

References:

[1] F. Hou, J. Li, P. Pan, J. Xu, L. Liu, W. Liu, B. Song, N. Li, J. Wan, H. Gao, Isolation and characterisation of a new antimicrobial peptide from the skin of Xenopus laevis, Int. J. Antimicrob. Agents. 38 (2011) 510–515. doi:10.1016/j.ijantimicag.2011.07.012.

[2] K. Lohner, F. Prossnigg, Biological activity and structural aspects of PGLa interaction with membrane mimetic systems, Biochim. Biophys. Acta. 1788 (2009) 1656–1666. doi:10.1016/j.bbamem.2009.05.012.

[3] N. Kamech, D. Vukičević, A. Ladram, C. Piesse, J. Vasseur, V. Bojović, J. Simunić, D. Juretić, Improving the Selectivity of Antimicrobial Peptides from Anuran Skin, J. Chem. Inf. Model. 52 (2012) 3341–3351. doi:10.1021/ci300328y.